Senior Machine Learning Engineer
Company | Capital One |
---|---|
Location | Cambridge, MA, USA, McLean, VA, USA |
Salary | $158600 – $181000 |
Type | Full-Time |
Degrees | Bachelor’s, Master’s, PhD |
Experience Level | Senior |
Requirements
- Bachelor’s degree
- At least 4 years of experience programming with Python, Scala, or Java (Internship experience does not apply)
- At least 3 years of experience designing and building data-intensive solutions using distributed computing
- At least 2 years of on-the-job experience with an industry recognized ML frameworks (scikit-learn, PyTorch, Dask, Spark, or TensorFlow)
- At least 1 year of experience productionizing, monitoring, and maintaining models
Responsibilities
- Design, build, and/or deliver ML models and components that solve real-world business problems, while working in collaboration with the Product and Data Science teams.
- Inform your ML infrastructure decisions using your understanding of ML modeling techniques and issues, including choice of model, data, and feature selection, model training, hyperparameter tuning, dimensionality, bias/variance, and validation.
- Solve complex problems by writing and testing application code, developing and validating ML models, and automating tests and deployment.
- Collaborate as part of a cross-functional Agile team to create and enhance software that enables state-of-the-art big data and ML applications.
- Retrain, maintain, and monitor models in production.
- Leverage or build cloud-based architectures, technologies, and/or platforms to deliver optimized ML models at scale.
- Construct optimized data pipelines to feed ML models.
- Leverage continuous integration and continuous deployment best practices, including test automation and monitoring, to ensure successful deployment of ML models and application code.
- Ensure all code is well-managed to reduce vulnerabilities, models are well-governed from a risk perspective, and the ML follows best practices in Responsible and Explainable AI.
- Use programming languages like Python, Scala, or Java.
Preferred Qualifications
- 1+ years of experience building, scaling, and optimizing ML systems
- 1+ years of experience with data gathering and preparation for ML models
- 2+ years of experience developing performant, resilient, and maintainable code
- Experience developing and deploying ML solutions in a public cloud such as AWS, Azure, or Google Cloud Platform
- Master’s or doctoral degree in computer science, electrical engineering, mathematics, or a similar field
- 3+ years of experience with distributed file systems or multi-node database paradigms
- Contributed to open source ML software
- Authored/co-authored a paper on a ML technique, model, or proof of concept
- 3+ years of experience building production-ready data pipelines that feed ML models
- Experience designing, implementing, and scaling complex data pipelines for ML models and evaluating their performance